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Abstract: Cancer is a heterogeneous disease in most respects,
including its cellularity, different genetic alterations, and diverse
clinical behaviors. Traditional molecular analyses are reductionist,
assessing only 1 or a few genes at a time, thus working with a
biologic model too specific and limited to confront a process whose
clinical outcome is likely to be governed by the combined influence
of many genes. The potential of functional genomics is enormous,
because for each experiment, thousands of relevant observations can
be made simultaneously. Accordingly, DNA array, like other high-
throughput technologies, might catalyze and ultimately accelerate
the development of knowledge in tumor cell biology. Although in its
infancy, the implementation of DNA array technology in cancer
research has already provided investigators with novel data and
intriguing new hypotheses on the molecular cascade leading to
carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic
agents. Given the revolutionary implications that the use of this
technology might have in the clinical management of patients with
cancer, principles of DNA array-based tumor gene profiling need to
be clearly understood for the data to be correctly interpreted and
appreciated. In the present work, we discuss the technical features
characterizing this powerful laboratory tool and review the applica-
tions so far described in the field of oncology.

(Ann Surg 2005;241: 16–26)

The heterogeneity of malignant cells and the variable host
background produce multiple tumor subclasses. Many

analytic methods have been used to study human tumors and
to classify them into homogeneous groups that can predict
clinical behavior. Currently, cancer classifications are princi-

pally based on clinical and morphologic features that only
partially reflect this heterogeneity, reducing the probability of
the most appropriate diagnostic and therapeutic strategy for
each patient. Most current anticancer agents do not differen-
tiate between cancerous and normal cells, resulting in some-
times disastrous toxicity and an inconstant efficiency. The
development of innovative drugs that selectively target can-
cer cells while sparing normal tissues is very promising as
suggested by successful recent examples such as the use of
mAb therapy against the ERBB2 receptor in breast cancer1 or
the tyrosine kinase inhibitor STI571 in chronic myelogenous
leukemia2 and GIST.3

The development of several gene expression profiling
methods such as comparative genomic hybridization (CGH),4

differential display,5 serial analysis of gene expression
(SAGE),6 and DNA arrays,7 together with the sequencing of
the human genome, has provided an opportunity to monitor
and investigate the complex cascade of molecular events
leading to tumor development and progression. The availabil-
ity of such large amounts of information has shifted the
attention of scientists toward a nonreductionist approach to
biologic phenomena.8 High-throughput technologies can be
used to follow changing patterns of gene expression over
time. Among them, DNA arrays have become prominent
because they are easier to use, do not require large-scale
DNA sequencing, and allow the parallel quantification of
thousands of genes from multiple samples. The ultimate
effects of such large repertoire of biologic variables can be
impossible to be predict only looking at changes in gene
expression profiles over time. Therefore, DNA array technol-
ogy should be complemented with other recently developed
high-throughput assays such as tissue microarray9 and pro-
teomics.10 Hopefully, by integrating these powerful analytic
tools, investigators will be able to comprehensively describe
the molecular portrait of the biologic phenomena underlying
tumor etiopathogenesis and clinical behavior.

DNA array technology is rapidly spreading worldwide
and has the potential to drastically change the therapeutic
approach to patients affected with tumor. Given the central
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role played by surgeons in the current management of pa-
tients with solid cancer, it is of paramount importance for
them to know the principles characterizing this laboratory
tool to critically appreciate the results originating from this
biotechnology. We describe its main technical features, from
DNA array construction to data analysis, and review some of
the most important and intriguing results already achieved in
the field of oncology.

DNA ARRAY TECHNICAL FEATURES
High-throughput DNA array technology allows for the

simultaneous measurement of the expression level of thou-
sands of genes in a single experiment. Each array consists of
a solid support (usually nylon or glass) in which cDNA or
oligonucleotides (ie, targets) are spotted in a known pattern.
Fluorescent or radioactive genetic material (ie, probes) de-
rived from mRNA are hybridized to the complementary DNA
on the array. The radioactive or fluorescence emissions from
the specifically bound probe are detected using an appropriate
scanner, giving a quantitative estimate of each gene expres-
sion. Ultimately, these signals represent the amounts of
mRNA originally present in the cell.

The process can be described in 3 steps: 1) array
construction, 2) sample preparation and array hybridization,
and 3) image analysis and data analysis.

Technologic Platforms
Two main implementations of DNA arrays have been

applied with success. The first uses arrays of cDNA clones
robotically spotted on a solid surface in the form of polymer-
ase chain reaction (PCR) products. Several versions exist
depending on the type of support (nylon, glass) and the type
of target labeling (radioactivity, colorimetry, fluores-
cence).11–13 This approach is flexible, allowing researchers to
make arrays with their own gene sets, but it requires accurate
collection and storage of cDNA clones and PCR products,
which may be avoided by using commercially available
arrays. Glass-based full-length cDNA arrays12 are widely
used, in which the DNA probes are labeled by incorporation
of fluorescently tagged nucleotides. Typically, 2 probes are
hybridized on a single array (so-called test or experimental
probe, and reference or control probe, respectively), each
labeled with 2 different fluorophores (Fig. 1). The expression
of a gene in an experimental situation is then expressed as a
relative ratio with respect to the control sample (ie, untreated

FIGURE 1. Scheme of glass-based cDNA array. DNA targets are represented by cDNA clones robotically spotted onto a solid
surface. Each cDNA element on the array represents a gene. DNA probes derive from reverse-transcribed RNA extracted from
biologic samples. Typically, 2 probes are hybridized on a single array: they are the control probe (usually labeled with Cy3
fluorophore) and the experimental probe (usually labeled with Cy5 fluorophore). The transcriptional levels of a given gene in an
experimental situation is therefore expressed as a relative ratio with respect to the control sample. The image shown is produced
by superimposing the Cy3 fluorescence image (pseudocolored green) and the Cy5 fluorescence image (pseudocolored red). Thus,
red, green, and yellow colors represent respectively increased, decreased, and equal gene copy number in the experimental
sample with respect to the control sample. Low fluorescence intensity is the result of low gene expression in both samples.
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vs, treated cell line, disease vs. normal tissue, and so on). In
case of nylon arrays, an automatic gridder prints PCR ampli-
fied cDNA to positively charged nylon membranes, and RNA
probes are labeled with P33 or P32-dCTP during a reverse
transcription reaction. Although cheap, nylon arrays are being
overlooked by investigators in favor of fluorescence-based
DNA arrays, which offer the capacity for a higher throughput
of samples,14 allow for significant time saving (ie, there is no
exposing of phosphorscreens for days because slides are
simply scanned in minutes), and need not to use radioactive
isotopes.

The second implementation (Fig. 2) uses arrays of
oligonucleotides either directly synthesized in situ on a sup-
port15,16 or robotically spotted.17 Probe design requires
knowledge of the gene sequences. Their length (oligonucle-
otides of 20–80 bp) allows for differential detection of
members of gene families or alternative transcripts not dis-
tinguishable with full-length cDNA arrays.16,18 The main
drawback remains the elevated cost. This technology uses a
different system to label the probe. Message RNA is con-
verted in biotinylated complementary RNA before being
hybridized to the array. Each sample is hybridized to a
different array and every array is incubated with an avidin-
conjugated fluorophore. Current commercial products include
sets of arrays that monitor 36,000 potential mouse genes and
60,000 potential human genes.

STUDY DESIGN
The correlation observed between gene expression lev-

els from duplicate spots on a single array usually exceeds
95%. This is often interpreted as a demonstration of repro-
ducibility. However, if the same sample is split and hybrid-
ized to 2 different arrays, the correlation across hybridiza-
tions is likely to fall to the 60% to 80% range. Correlations
between samples obtained from individual inbred mice may
be as low as 30%. If the experiments are carried out in
different laboratories, the correlations may be even lower.
These decreasing correlations reflect the cumulative contri-
butions of multiple sources of variation.19 The main sources
of variability are biologic and technical variation. As for the
former, it is generally appropriate to take steps to vary the
conditions of the experiment, for example, by assaying mul-
tiple animals, to ensure that the effects that do achieve
statistical significance are real and will be reproducible in
different settings.

Identifying the independent units in an experiment is a
prerequisite for a proper statistical analysis, because any
hidden correlations in the data can lead to bias and inflated
levels of statistical significance. In general, 2 measurements
may be regarded as independent only if the experimental
materials on which the measurements were obtained could
have received different treatments, and if the materials were
handled separately at all stages of the experiment when

FIGURE 2. Oligonucleotide array scheme. The key point for
this DNA array platform is the targeted design of probe sets.
Using as little as 200 to 300 bases of gene, cDNA, or EST
sequence, independent 25-mer oligonucleotides are selected
to serve as unique, sequence-specific detectors. The arrays are
designed in silico, and as a result, it is not necessary to prepare,
verify, quantitate, and catalog a large number of cDNAs,
polymerase chain reaction products, and clones, and there is
no risk of a misidentified tube, clone, cDNA, or spot. Crucial for
this approach is the use of target redundancy, which is not
meant as the deposition of the same piece of DNA in multiple
locations on an array, but rather the use of multiple oligonu-
cleotides of different sequences designed to hybridize to dif-
ferent regions of the same RNA. The use of multiple indepen-
dent detectors for the same molecule greatly improves signal-
to-noise ratios, improves the accuracy of RNA quantitation,
reduces the effects of crosshybridization, and drastically de-
creases the rate of false-positives. For each gene monitored, 32
oligonucleotides are synthesized, using photolithography, di-
rectly onto the chip. Oligonucleotides are arranged as 16 pairs:
each pair includes a perfect match 25mer, which is an exact
complement to the gene sequence, and a control oligonucle-
otide, which differs from the perfect match oligo at the 13th
base. The reported hybridization intensity is a composite of the
16 perfect match–mismatch differences per gene. This redun-
dancy considerably increases the statistical power of the tech-
nology and data can be analyzed using standard statistical tech-
niques18 or by taking advantage of the changes in relative
hybridization between perfect match and mismatch oligos to
define genes as absent, present, increased, or decreased accord-
ing to a set of heuristic rules.16 The mismatch probes act as
specificity controls that allow the direct subtraction of both back-
ground and crosshybridization signals, and allow discrimination
between “real” signals and those resulting from nonspecific or
semispecific hybridization, which are more likely to occur with
single-spot strategy DNA arrays (eg, cDNA array platform). In the
presence of even low concentrations of RNA, hybridization to the
perfect match/mismatch pairs produces recognizable and quan-
titative fluorescent patterns. The strength of these patterns di-
rectly relates to the concentration of the RNA molecules in the
complex sample (even without a competitive hybridization or
2-color comparison).
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variation might have been introduced. For instance, consider
a cell line that is divided into 8 equal samples. Four are
assigned to 1 treatment and the remaining 4 receive a second
treatment. The 8 aliquots are handled separately throughout
the entire experimental procedure, and each is measured in
triplicate. This results in 24 total observations, but there are 8
experimental units. Now consider a cell line that is divided
into 2 aliquots, each one receiving a different treatment. The
material is further subdivided into 4 aliquots per treatment
group, each of which is processed and then measured in
triplicate. Again we have 24 observations, but now there are
only 2 independent experimental units.

A simple way to assess the adequacy of a design is to
determine the degrees of freedom (df). This is done by
counting the number of independent units and subtracting
from it the number of distinct treatments (count all combina-
tions that occur if there are multiple treatment factors). If
there are no degrees of freedom left, there may be no
information available to estimate the biologic variance, and
the statistical tests will rely on technical variance alone. Five
degrees of freedom or more are generally recommended for a
statistical analysis to be considered sound19 (Fig. 3).

To increase DNA array result reproducibility, the issue
of technical variability should also be addressed while de-
signing experiments. Although this can be achieved by re-
peating the experiment, high-throughput DNA array experts
suggest that the use of spot replicates within the same array is
the best way to deal with this issue.20,21 In particular, biosta-
tistical analysis has shown that a minimum of 3 replicates
should be used to reduce the number of false-positive and
false-negative results generated by studies performed without
replication.22

DATA ANALYSIS

Comparison of Independent and Paired
Samples

The comparison of 2 independent samples (eg, diseased
vs. normal tissue) is the simplest experimental situation.
Although a number of statistical tests are available to assess
the significance of the observed differences, most of the
groups active in this field use filtering rules based on arbi-
trarily assigned fold difference criteria. This strategy lies on
the unverified assumption that a less than X-fold difference in
gene expression is not associated with a significant biologic
effect. Despite the good results yielded with this meth-
od,12,23,24 it is possible that the application of a simple
fold-based rule leads to false-positive results.25 Classic sta-
tistical techniques can be adopted to test the significance of
the observed differences.26,27 For example, if 2 independent
samples are compared, a standard t test is appropriate. The
genes in the array can be ranked according to increasing P
values and an appropriate threshold can be chosen depending

on the percentage of false-positives that we are prepared to
tolerate. If the 2 samples to compare are somehow related to
each other (ie, they both come from the same individual),
then a paired t test would be needed to assess the significance

FIGURE 3. Study design for DNA array-based experiments. (A)
Pairwise comparison. In the search for carcinogenesis-related
genes, the gene profile of tumor biopsies from 4 patients is
compared with that of normal tissue biopsies from 4 healthy
subjects, providing 6 (8 independent experimental units minus
2 experimental conditions) residual degrees of freedom (df).
(B) In this experiment, the gene profile of 2 samples (1 treated
with an antiblastic drug) of the same tumor cell line are
compared to dissect the mechanism of action of the antiblastic
drug. Four aliquots are obtained from each cell line and
directly compared on pairs of DNA arrays. The experiment
lacks biologic replication because the aliquots are not indepen-
dent (2 independent experimental units, 2 treatments, df � 0).
The design could be improved by using 8 independent cell
lines, 4 of them treated with the antiblastic agent (in this case,
df would be 6). (C) In a time-course study on the effects of an
antiblastic treatment on the gene profile of the tumor micro-
environment, 3 time points are considered, 4 mice being
sampled from each of them (12 independent experimental
units, 3 experimental conditions, df � 9).
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of the differences. More complex experimental situations
may involve the comparison of multiple samples. Appropri-
ate statistical tests are available, but in analogy with the
2-sample comparison case, thresholding rules are often
used.25

Classification of Gene Expression Data
DNA arrays deliver several thousands of measurements

per experiment. The analysis, interpretation, and meaningful
display and storage of such a large volume of data are
particularly challenging. Although genes that display extreme
expression changes between samples may require specific
analysis, the true strength of high-throughput experiments in
revealing the complexity of tumor/host relation derives from
the mathematical identification of expression patterns (called
“signatures”) within profiling data. In the context of gene
expression studies, this involves finding similar gene expres-
sion patterns by comparing profiles. Dedicated software de-
veloped for this task includes the “unsupervised” and “super-
vised” varieties.28 Unsupervised methods (eg, cluster
analysis,29 self-organizing map �SOM�,30 principal compo-
nent analysis �PCA�31) define classes without any a priori
intervention on data, which are organized by clustering genes
and/or samples simply according to similarities in their ex-
pression profiles. The resulting sample classification often
correlates with a general characteristic of the sample as
defined by large sets of genes and not necessarily with the
particular feature of interest, generally identified by a smaller
set of genes. By defining relevant classes before analysis,
supervised techniques (eg, support vector machines,32

weighted votes,33 and neural networks34) bypass this issue.
These algorithms incorporate external information related to
samples studied to identify the optimal set of genes that best
discriminate between experimental samples. Unsupervised
clustering techniques for analyzing microarrays are useful for
initial data exploration and have been validated under certain
circumstances by their successful “rediscovery” of known
classes of genes.14,29 In particular, unsupervised techniques
can be effectively adopted in oncology when the aim of the
study is to identify new prognostic subgroups.14 However,
these methods have certain shortfalls. Because prior biologic
knowledge is not incorporated, all measurements within the
expression profile contribute equally to the analysis. Thus,
measurements that have little or nothing to do with distin-
guishing the groups of interest can confound the placement of
an example into the correct category. The advantage of
supervised classification for gene profile analysis is its ability
to incorporate biologic knowledge. For example, a supervised
approach might be used to predict whether a gene’s product
is involved in protein synthesis by comparing its expression
profile to the profiles of both genes known to be involved and
genes known not to be involved in protein synthesis. Yet, if
we measure gene-expression patterns using RNAs collected

from various patients for which there is, for example, tumor-
stage classification or survival data, we can use the DNA
array data to “train” an algorithm that can then be applied to
the classification of other previously unclassified samples.
This approach could lead to the development of “molecular
expression fingerprinting” for disease classification. In cancer
diagnosis, the ability to produce a molecular expression
fingerprint of each tumor might prove to be extremely im-
portant because histologically similar tumors might in fact be
the result of substantially different genetic changes, which
might profoundly influence the progression of the tumor and
its response to treatment. Recent reports have demonstrated
the ability of supervised classification to type leukemia (my-
eloid vs. lymphoid)33 and assign functions to genes35 based
on DNA array data.

Cluster Analysis
Depending on the way in which the data are clustered,

we can distinguish between hierarchical and nonhierarchical
clustering. Hierarchical clustering, which is the most com-
monly adopted unsupervised method, allows detection of
higher-order relationships between clusters of profiles. By
contrast, the majority of nonhierarchical classification tech-
niques (eg, quality cluster36 or k-means.37) work by allocating
gene expression profiles to a predefined number of clusters
(supervised methods).38 For example, an attempt to classify
patients with 2 morphologically similar (eg, breast carci-
noma) but clinically distinct (eg, favorable vs. poor outcome)
diseases using microarray expression patterns can be imag-
ined. By using k-means clustering on experiments with k � 2,
the data will be partitioned into 2 groups. The challenge then
faced is to determine whether or not, from the genetic
viewpoint, there are really only 2 distinct groups represented
in the data.

The possibility of exploring different levels of the
hierarchy has led many authors to prefer hierarchical cluster-
ing to the nonhierarchical alternatives. In particular, aggre-
gative hierarchical clustering is still the preferred choice for
the analysis of patterns of gene expression.29,39–46 It pro-
duces a representation of the data with the shape of a binary
tree, in which the most similar patterns are clustered in a
hierarchy of nested subsets (Fig. 4).

Neural Networks
Clustering methods have serious drawbacks when deal-

ing with data containing a nonnegligible amount of noise (eg,
ill-defined items with irrelevant variables and outliers). In
addition, some authors have noted that aggregative hierarchi-
cal clustering suffers from a lack of robustness so that
solutions may be not unique and results may be dependent on
the data order.47 Unsupervised neural networks, and in par-
ticular SOM,48 provide a more robust and accurate approach
to the clustering of large sets of data. They are robust with
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respect to noise, and they are generally independent of the
shape of the data distribution. Another advantage of neural
networks using SOM is the high performance displayed with
large sets of data. Initially, genes are randomly allocated to
the nodes but following iterative learning steps, the algorithm
undergoes a training process that will result in a correct
classification. During this process, the weighting of nodes
change by repeated interaction with the items of the dataset in
a way that captures the distribution of variability of the

dataset. Thus, similar gene expression patterns map together
in the network and, as far as possible, from the different
patterns. At the end of the training process, the nodes of the
SOM grid have clusters of related gene expression patterns
assigned, and the trained nodes represent an average pattern
of the cluster of data that map into it. This reduction of the
data space is a very interesting property when dealing with
big datasets, which is often the case with DNA array data.49

The efficacy of SOM in organizing DNA array-derived
data has been demonstrated in both basic and clinical re-
search. For instance, some investigators used SOM to com-
pare the time-series response of 4 hematopoietic cell lines
responding to an activation signal (HL-60, U937, and Jurkat
were treated with PMA, whereas NB4 was treated with
ATRA).47 SOM was used to classify gene expression profiles
defined as the combination of the time points of the 4
experiments. SOM generated a grid of “nodes,” each contain-
ing genes with similar profiles across the data series, whereas
the identification of the clusters containing genes with inter-
esting differences/similarities between the different time
courses was left to the interpretation of the researchers; they
discovered that the largest group contained genes specifically
induced by ATRA stimulation. These genes were not regu-
lated in the other cell lines after stimulation with PMA, thus
indicating a stimulation pathway (and a drug target) specific
for that cell line. In the clinical setting, SOM has been
successfully applied for the identification of acute leukemia
subtypes.33

Although SOM are a useful alternative to deterministic
clustering,33,47,50 they are not appropriate if the relationship
between the individual profiles needs to be revealed. In
analogy with the nonhierarchical methods like k-means, the
number of clusters is arbitrarily fixed from the beginning and
genes are allocated through a training process. Moreover,
SOM produce a nonproportional classification (topology-
preserving neural network).20 If irrelevant data (eg, invariant,
“flat” profiles) or some particular type of profile is abundant,
SOM will produce an output in which this type of data will
populate most of clusters. Because of this, the most interest-
ing profiles will map in few clusters and resolution might be
low for them.

In conclusion, despite the arsenal of methods used, the
optimal way of classifying such data is still open to debate,
and the information potentially obtainable from these high-
throughput analyses is still incompletely exploited. Likely,
new computational tools will be required to define gene-
interaction networks.51

APPLICATIONS TO CANCER RESEARCH
The potential applications of DNA array technology in

the field of oncology are virtually unlimited, and their com-
prehensive description is beyond the aim of this work. The
following is a brief description of some examples of how

FIGURE 4. Hierarchical aggregative clustering. Using dedi-
cated software, fluorescence ratios (see Fig. 1) are translated
into color codes. Consequently, genes with unchanged ex-
pression levels are colored as black, whereas those with in-
creasingly positive or negative expression are colored with
increasingly intense red or green, respectively. Accordingly,
the darker the color, the closer to unchanged expression. The
figure shows an example with the color-coded expression
values of 5 genes in 5 different experimental conditions (c1,
c2, c3, c4, c5). In the aggregative method, the closest pair of
profiles is chosen based on a given metric. Then, an average
of both profiles is constructed. This defines a relationship of
closeness between both profiles that remain tied by the cor-
responding branch of the tree. Thus, the linked profiles are
substituted by the average profile, and the process continues
until all the profiles are linked. The linkage relationship defines
the hierarchy of the tree.
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DNA array-based gene profiling data can be used to increase
our knowledge on cancer biology and ultimately improve the
management of patients with cancer.

Although this technology provides no information on
the biologically active products of genes (ie, proteins), func-
tional genomics studies have demonstrated a tight correlation
between the function of a protein and the expression patterns
of its gene,7 which represents the rational for a gene profile-
based formulation of scientific hypotheses. Once a gene or
(more frequently) a set of genes have been identified in a
DNA array-based experiment, investigators commonly use to
confirm the results with more accurate low-throughput tech-
niques such as quantitative real-time PCR.52 To further val-
idate gene-profiling data, the expression of proteins coded by
the genes of interest is generally assessed by standard immu-
nohistochemistry or Western blot techniques. Because trans-
lational gene expression regulation53 and posttranslational
protein modifications are also of crucial importance in deter-
mining cell functions, DNA array technology should be
complemented with other recently developed high-through-
put assays such as tissue microarray9 and proteomics.54,55

Hopefully, by integrating these powerful analytic tools, in-
vestigators will be able to comprehensively describe the
molecular portrait of the biologic phenomena underlying
tumor development and progression.

Carcinogenesis and Antiblastic Drug
Development

Given the multigenic complexity of carcinogenesis and
the multiplicity of tumor/host interactions, high-throughput
DNA array technology provides investigators with a powerful
laboratory tool, which can portrait the molecular kinetics of
cell transformation and tumor progression by scanning the
expression of thousands of genes simultaneously.

Two major gene-profiling approaches have been so far
adopted to dissect the process of carcinogenesis. The most
intuitive is comparing gene profiles of each tumor histologic
type with its corresponding normal tissue of origin or with
cancer precursors. With this strategy, several authors have
investigated esophageal,56 gastric,57 colon,58–60 ovarian,61,62

hepatocellular,63 and prostate64 carcinomas, and melanoma.65

Other investigators have addressed the question whether a
common pathway of malignancy characterizes tumors arising
from different tissues.41,66,67 It has been found that the most
striking and most common gene expression pattern is the
cell-proliferation cluster.68 This gene set contains genes in-
volved in regulating the cell cycle and genes that encode
structural protein components required for DNA replication
and chromosome dynamics. The proliferation signature is
correlated with cellular growth rates in vitro43 and has been
identified in breast,41 lung,67,69 ovary,61 prostate,70 liver,71

and gastric carcinomas,72 as well as gliomas73 and lympho-
mas.74 The identification of this cluster in vivo probably

represents how rapidly a given tumor is growing and, as
might be expected, the high expression of these genes has
been found to indicate a poor prognosis.

In most cases, the therapeutic implications of these
results are yet to be defined. Pharmacogenomics should
enormously benefit from tumor gene-profiling studies.75,76

The definition of tumor-associated molecular abnormalities
on a genomewide scale should in fact greatly accelerate the
pace of discovery of molecular targets for novel anticancer
agents.77 Although several tumor-specific gene pathways
have been detected with DNA array technology,78,79 this field
of oncology can be still considered in its infancy, and much
more work needs to be done to clinically exploit the knowl-
edge deriving from this holistic approach to cancer biology
dissection.80 Besides providing researchers with novel mo-
lecular targets to fight cancer, high-throughput DNA array
technology is expected to foster in an unprecedented way the
development of patient-tailored antiblastic therapy. Tumors
are well known to be heterogeneously sensitive to antiblastic
agents, which leads physicians to administer several lines of
drug regimens in an empiric search for the “best” treatment of
a given patient. Preclinical experiments have already demon-
strated that, at least for a subset of antiblastic agents, the gene
signature of tumor cell lines can predict malignant cell
sensitivity to chemotherapeutic drugs.81,82 Similar consider-
ations have also been made for tumor sensitivity to radiation
therapy.83–85 As a corollary, the identification of molecular
pathways involved in tumor chemoresistance is likely to lead
to the discovery of novel drugs aimed at reversing this
phenomenon.86

Prognosis
One of the major challenges in medicine is the identi-

fication of prognostic markers identifying the subgroup of
patients who will recur after macroscopically radical surgery.
Unfortunately, there are currently no markers that can predict
accurately when or if a tumor will recur, which leaves
physicians with the difficulty of choosing the best treatment
options. To assure a positive outcome, therefore, individuals
with early-stage cancer often receive adjuvant treatments that
have their own associated morbidity and mortality. Consid-
ering the case of breast cancer, no new histoclinical factor—
except the protein overexpression of ERBB2 and recently of
uPA/PAI-1—has been validated as a prognostic and/or pre-
dictive factor during the past 2 decades. Although adjuvant
chemotherapy improves survival in localized breast and colon
cancer, a number of issues remain. In particular, patients with
good prognosis need to be more accurately identified to avoid
potentially toxic treatment, and patients of poor prognosis
who will or will not benefit from the standard adjuvant
chemotherapy currently used need to be determined.

With high-throughput DNA arrays, investigators have
the possibility to molecularly portrait cancer aggressiveness
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and metastatic potential on a genomewide scale, thus identi-
fying patients who really benefit from complementary thera-
pies after surgery. Infiltrating breast carcinomas appear fairly
homogenous in histologic assessments but are heterogeneous
in clinical behavior. To address this issue, van’t Veer et al87

profiled the primary tumors and carried out a supervised
analysis in which the individuals were separated into 2
groups: those who developed metastases in less than 5 years
(bad prognosis) and those who were metastasis-free for
longer than 5 years (good prognosis). They identified 231
genes that correlated with this parameter. Through further
statistical analysis, a discriminatory set of 70 genes was
identified that showed 89% accuracy. This group of markers
was found to be a statistically significant predictor in a
multivariate analysis, showing that gene profiling can add
value to the current list of clinical tests.

Analyzing mRNA expression of approximately 1000
candidate genes in tumor samples from 55 women who were
treated with adjuvant anthracycline-based chemotherapy,
Bertucci et al identified a 40-gene set whose expression
distinguished 3 subclasses of tumors that, although balanced
with respect to clinicopathologic features, showed signifi-
cantly different 5-year survival.88 Similarly, Sorlie et al
defined 5 subclasses of locally advanced breast tumors with
different survival after neoadjuvant doxorubicin.66 To further
explore the validity of results, investigators compared the
lists of discriminator genes identified in these breast cancer
prognostic studies.66,88,89 Despite several different method-
ologic aspects, 26 genes were found in at least 2 lists.90 It is
reassuring that some of those genes have a known prognostic
value (eg, ESR1, ERBB2), but most are not yet associated
with prognosis and have functions making them prime can-
didates for novel therapeutic targets.

Two major prognostic factors of breast cancer have
been investigated by comparing the molecular profiles of
estrogen receptor (ER)-positive and ER-negative tu-
mors87,88,91,92 and profiles of tumors with and without axil-
lary lymph node metastasis.93,94 Yet, the determination of
lymph node status currently relies on surgical axillary lymph
dissection, which is associated with significant morbidity.
Although sentinel lymph node biopsy is being evaluated to
replace classic invasive dissection, false-negative results are
possible. Accurate prediction of the axillary status from
analysis of tumors would obviate the recourse to lymph node
sampling/dissection. Among differentially expressed genes
that Bertucci et al identified between tumors with and without
node metastasis, some had a function in agreement with a
potential role in invasion (eg, ERBB2, CDH1), whereas for
others (eg, SOX4, GSTP1), the connection was not clear,
calling for further investigations.93

Much work has been carried out to molecularly classify
lung tumors using DNA arrays.67,69,95,96 Garber et al67 iden-
tified significant diversity in expression patterns in adenocar-

cinomas and defined 3 subtypes that predicted favorable,
intermediate, and poor outcomes. Two of these 3 adenocar-
cinoma subtypes were observed by Bhattacharjee et al.69 Beer
et al also identified prognostic groups within adenocarcino-
mas using survival as supervision.95 Investigating the gene
display of primary nonsmall cell lung carcinomas, Kikuchi et
al identified 40 genes whose expression could identify pa-
tients with lymph node metastasis from those without metas-
tasis, thus confirming the ability of gene profiling to distin-
guish between patients who need a aggressive therapeutic
approach from those who are likely to be already cured.97

Studies on renal cell carcinomas,98 prostate tumors,99,100 and
hematologic malignancies101 have also identified patterns of
gene expression with prognostic importance, and it is likely
that other types of tumor not profiled as yet will be soon
classified into subtypes of clinical importance.

Tumor Immunology
Until recently, most studies addressing the immuno-

logic effects of vaccination in patients with cancer have
looked at variations in the level of TAA-specific reactivity in
circulating lymphocytes. Results from clinical trials have
shown that vaccination can be quite effective in inducing
tumor-specific T-cell responses that can be easily observed
among circulating lymphocytes. However, the identification
of such immune responses could not be consistently corre-
lated with tumor regression.

DNA array technology allowed us to find that mela-
noma metastases undergoing complete regression in response
to peptide/IL-2-based vaccination were characterized by a
higher expression of some immune-related genes as com-
pared with those progressing.65,102 Among these genes, we
focused on interleukin-10 (IL-10). Its gene overexpression
was verified by quantitative real-time PCR. Then, its protein
levels were assessed in metastatic melanoma biopsies by laser
scanning cytometry,103,104 which confirmed the genetic find-
ings. Although IL-10 is generally considered an immunosup-
pressive molecule103,105,106, several preclinical models have
shown that IL-10 can also mediate tumor regression by
stimulating NK cells activity.107–112 Using cDNA glass array
we observed that, in vitro, IL-10 induced the expression of
cytotoxicity related genes (eg, TIA-1) by human natural killer
(NK) cells but not cytotoxic T lymphocytes.113 These obser-
vations led us to hypothesize that, in the presence of high
intratumoral (and not systemic) levels of IL-10, the adaptive
immune response (mounted by the systemic vaccination)
might be favored by NK cell activation. In fact, these innate
immunity cell mediators might be stimulated by IL-10 to lyse
cancer cells, thus increasing TAA availability and “danger
signals” delivery required by antigen-presenting cells (eg,
dendritic cells) to be activated and effectively prime cytotoxic
T lymphocytes against TAA peptides administered with the
vaccine.114 If this hypothesis were proved to be correct,
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future anticancer immunotherapy strategies should address
the challenging task of stimulating both the innate at the
tumor site and adaptive immunity systemically. To this aim,
we are currently carrying out a study in which isolated limb
perfusion115,116 is used for the locoregional delivery of IL-10
during peptide-based antitumor vaccination for the treatment
of murine sarcoma. This model should allow us to verify
whether or not high levels of intratumoral IL-10 (as obtained
in the animal model with the surgical procedure mentioned
here) enhance the in vivo activity of systemic vaccination
regimens.
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